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Abstract 

Large Language Models (LLMs) offer strong capabilities for automating complex 
decisions, but they exhibit inherent instability: identical prompts can yield different 
outputs, and generated content may occasionally be unsupported or incorrect. Such 
behaviour makes LLMs unsuitable as standalone decision engines in high-stakes 
domains such as banking, healthcare, or insurance where outcomes must be 
reproducible, explainable, and auditable. 

We introduce SESL (Simple Expert System Language), a deterministic rule-based 
system that guarantees identical outputs for identical inputs. SESL expresses policies 
as human, readable rules, provides faithful explanations grounded in execution traces, 
and includes built, in tools for testing and validation. 

We propose a hybrid architecture in which LLMs assist with rule authoring while SESL 
performs the actual decision execution. In an evaluation using 100 synthetic loan 
applications (each evaluated six times), SESL produced perfectly consistent results 
across all 600 evaluations, whereas the LLM, only approach showed both decision 
inconsistencies (3, 5% volatility) and systematic policy errors (42% error rate before 
prompt tuning, improving to 22% after tuning). 

These findings suggest that combining LLM, assisted authoring with deterministic 
symbolic execution offers a practical pathway toward trustworthy AI in regulated 
settings. 

 

1. Introduction 

LLMs such as GPT, style models have demonstrated strong performance on knowledge, 
intensive tasks, natural language reasoning, and code generation. However, they are 
stochastic generative models: the same prompt can yield different outputs, and these 
outputs may include confident yet fabricated facts or justifications. 

Recent empirical studies have documented hallucination rates of approximately 1.75% 
in user reported issues with AI powered mobile applications and other studies show 
that chain-of-thought explanations (the step, by, step reasoning that LLMs generate 
when solving problems) are unstable across samples and need not reflect the model's 



true reasoning process [4–6,15]. In other words, when an LLM shows its "work," that 
explanation may not accurately represent how it actually arrived at its answer. 

As LLM deployments expand from isolated tasks to multi, stage or agentic workflows, 
the associated risks compound: errors introduced in one step can propagate, amplify, 
or interact with later reasoning stages, leading to cascading failures that are difficult to 
detect or audit [31]. 

Regulatory and governance frameworks, including the European Parliament AI Act [32], 
OECD AI Principles [7], and the NIST AI Risk Management Framework [8], emphasize 
transparency, accountability, and risk mitigation. The European Union's General Data 
Protection Regulation (GDPR) establishes requirements for meaningful information 
about algorithmic decision, making, while ongoing debates about a "right to 
explanation" [9,10,18] reflect increasing demands for interpretable AI systems. 
Organizations therefore require infrastructure that leverages the flexibility of LLMs while 
enforcing determinism and explainability. 

These properties of LLMs conflict with the requirements of high, stakes environments 
such as credit risk modelling, fraud detection, clinical triage, and regulatory 
compliance, where decisions must be reproducible, auditable, and accompanied by 
clear justifications [16,17]. 

Recent efforts to improve the governance of LLMs such as guardrails, safety layers, 
structured prompting, or post, hoc validation have shown some reduction in risks but 
do not address the fundamental limitation that an LLM is intrinsically stochastic and 
generates outputs through probabilistic next, token prediction [23,30]. These added 
control mechanisms sit around the model rather than changing its underlying 
behaviour, meaning they can constrain or filter outputs but cannot guarantee 
determinism, faithfulness, or complete avoidance of hallucination. As more guardrails 
are layered on, the system becomes increasingly complex, harder to audit, and more 
difficult to reason about, while still lacking the reproducibility and explicit logic required 
in high, stakes decision, making. 

Rule-based systems are designed for this setting. SESL is a domain, specific language 
and runtime for expressing decision logic as structured rules evaluated by a 
deterministic forward, chaining engine. SESL rules are written in a human, readable 
YAML, based format, providing clarity and auditability. The SESL engine evaluates rules 
deterministically, tracks dependencies, and produces detailed evaluation traces. SESL 
includes tooling for linting, scenario, based testing, and visual explanations such as 
driver trees. 

This paper investigates whether a deterministic symbolic layer can mitigate reliability 
issues inherent to LLMs while preserving usability. It also explores if this approach 



overcomes the previous challenges of authoring the rules needed for rule-based 
systems.  

We use SESL as a case study of a tool with a symbolic architecture intentionally 
designed to interoperate with LLMs. In this arrangement, LLMs assist with rule 
authoring, scenario generation, and explanatory text, whereas SESL retains 
responsibility for deterministic execution of all operational decisions. 

This combination using neural networks (LLMs) for flexible interpretation and generation 
alongside symbolic systems (SESL) for reliable execution is known as a neuro, symbolic 
approach, and it aims to leverage the strengths of both paradigms while mitigating their 
respective weaknesses. 

Contributions 

1. We present SESL as a modern rule-based expert, system language focused on 
determinism and explainability 

2. We propose a hybrid LLM–SESL architecture in which LLMs author and explain 
models while SESL executes decisions deterministically 

3. We evaluate the hybrid approach on synthetic loan approval tasks, 
demonstrating perfect determinism and elimination of hallucinated justifications 
compared to LLM, only baselines 

 

2. Problem Definition and Motivation 

Organizations deploying automated decision, making in high, stakes commercial 
domains such as lending, underwriting, fraud detection, or compliance must satisfy: 

1. Determinism: The same inputs must always produce the same outputs 

2. Explainability: Every decision must include a traceable justification 

3. Governance: Models must support review, change control, regression testing, 
and audit 

LLMs alone fail these requirements due to hallucination [1–3], instability [4–6], and non, 
determinism. Research on hallucinations in LLMs identifies multiple contributing 
factors including training data quality, architectural design, and fundamental limitations 
of next, token prediction objectives. Recent work has shown that LLMs do not reliably 
use their intermediate chain-of-thought reasoning steps when generating answers, 
undermining the reliability of their explanations and causing failure to meet the 
governance criteria [4,5,15]. 



Traditional expert systems were deterministic and provide reliable outputs, but they 
have historically been costly to author manually and restrictive in scope. The effort 
required to encode domain knowledge into formal rules, maintain those rules as 
policies evolve, and handle edge cases has limited their practical adoption outside of 
mission, critical applications [39]. Additionally, classical expert systems often struggled 
with flexibility once the rules were written, adapting them to new scenarios or business 
contexts required substantial manual effort from domain experts. 

Organizations need a hybrid architecture where decision logic remains symbolic and 
deterministic, but where the authoring and maintenance burden is significantly 
reduced. LLMs offer a potential solution to this historical bottleneck: they can rapidly 
translate natural language policies into structured rules, propose test scenarios, and 
assist with rule refinement—dramatically lowering the cost and expertise barrier that 
previously limited rule-based system adoption [11,12–14,19]. 

 

3. Background and Related Work 

3.1 LLM Risks in High, Stakes Domains 

In high, stakes settings such as lending, insurance underwriting, medical diagnosis, or 
regulatory compliance, a single incorrect decision (even if rare) can result in disastrous 
consequences, substantial financial loss, legal liability, reputational damage, and harm 
to individuals. Unlike other LLM actions such as web search or content generation 
where occasional errors may be tolerable, these domains require systems where 
unexpected or incorrect responses are minimized and, when they do occur, are fully 
traceable and explainable. 

Beyond hallucination, LLMs present a fundamental opacity problem. These models are 
black, box systems with billions of parameters - it is impossible to understand precisely 
how, given a specific prompt, a particular response is actually produced. The internal 
computation involves complex, non, linear transformations across hundreds of layers 
of neural networks, making the path from input to output fundamentally untraceable. 

With complex prompts and chains of prompts (as in multi, step reasoning or agentic 
workflows), this opacity compounds: each step's output becomes the next step's input, 
creating cascading dependencies that are impossible to fully validate. 

While we can observe input, output behaviour and measure statistical patterns, we 
cannot prove that an LLM will respond correctly to novel inputs or edge cases. This 
makes validation extremely difficult and ultimately impossible to guarantee, rendering 
LLM, only systems unsuitable for high, stakes decisions where accountability and 
reproducibility are required. 

3.2 Explainability and Governance 



Regulators increasingly require transparency and traceability. The European Parliament 
AI Act [32], OECD [7], and NIST [8] frameworks require trustworthy, governable AI. There 
has already been much said about this need and how to approach compliance.  
Goodman and Flaxman's work on GDPR algorithmic accountability established the 
foundation for debates about rights to explanation in automated decision, making, 
while subsequent studies have clarified the scope and requirements of meaningful 
information about algorithmic logic, and Rudin argues for inherently interpretable 
models for safety, critical tasks, noting that post, hoc explanations for black, box 
models may perpetuate poor practices [11]. 

3.3 Symbolic and Neuro, Symbolic Systems 

A symbolic system is an AI approach that represents knowledge explicitly through rules, 
logic, and structured facts, allowing it to reason deterministically and transparently. 
They provide stable, auditable decision logic.  

In contrast, neural systems such as LLMs store knowledge implicitly in neural weights 
and generate outputs through probabilistic pattern prediction. LLMs provide broad 
linguistic and reasoning capabilities without guaranteed faithfulness or consistency. 

Traditional rule engines such as Drools, Prolog, CLIPS, and modern Business Rules 
Management Systems (BRMS) also provide deterministic rule execution, but SESL 
differs in its fixed evaluation semantics, built, in explanation artifacts, and explicit 
design for LLM, assisted rule authoring and validation. 

Fixed evaluation semantics means that SESL's rule engine follows a predetermined, 
invariant execution procedure: rules are always evaluated in the same order, conflicts 
are resolved using explicitly defined policies, and the same input facts always trigger 
the same sequence of rule firings. This contrasts with systems that may have 
configurable or implementation, dependent evaluation strategies, where subtle 
changes in configuration or runtime environment could alter execution behavior. 

Fixed semantics ensure that SESL models are truly portable and reproducible - a model 
will behave identically across different deployments, time periods, and system 
versions. 

SESL as a neuro-symbolic tool integrates across four features identified in recent 
surveys. It provides structured symbolic representations of tasks and states while 
incorporating neural components to learn patterns and latent properties from data. 
These learned elements enrich the symbolic structures and support SESL’s reasoning 
layer, which applies rules and constraints to produce transparent, explainable 
inferences. Finally, SESL combines the outputs of both learning and reasoning to guide 
decision-making, allowing it to select actions or evaluate plans in a way that reflects the 



complementary strengths of neural and symbolic approaches.

 

4. Hybrid LLM–SESL Method 

4.1 Division of Responsibilities 

In the Neuro-symbolic or hybrid LLM–SESL architecture, responsibilities are deliberately 
divided to balance flexibility with reliability. Large Language Models contribute 
interpretive and generative capabilities, translating natural, language policies into 
structured artifacts and improving human understanding of rule-based decisions. SESL, 
by contrast, serves as the deterministic execution and governance layer, ensuring that 
decisions are reproducible, auditable, and grounded in explicitly defined logic. 

This separation prevents stochastic or opaque behavior from influencing outcomes 
while still leveraging LLMs' strengths in model authoring and explanation. 

LLM Responsibilities: 

• Generate initial rules from policy documents 

• Refactor and document rules 

• Propose test scenarios 

• Produce natural, language explanations of rule execution 

SESL Responsibilities: 

• Provide structure and mechanisms for rules and scenarios 

• Execute deterministic decisions 

• Validate rules 

• Provide traceable, grounded explanations 

In this architecture, LLMs do not produce final decisions. They operate as authors, 
editors, and communicators. Decision authority is intentionally delegated to SESL to 
prevent stochastic variation, hallucinated justifications, or untraceable reasoning. 

4.2 Why the Separation Matters 

This clear division of responsibilities ensures trustworthiness, auditability, and 
operational safety: 

• The LLM provides semantic richness, flexibility, translation of policy language, 
and improved usability for humans 

• SESL provides the deterministic substrate, formal reasoning, strict validation, 
and reproducible explanations required for business, grade decisions 



Together, they form a hybrid neuro, symbolic architecture [12–14] where creativity and 
interpretation stay on the LLM side, while correctness and accountability stay on the 
SESL side. 

4.3 Cost and Performance Considerations 

The development and management of complex LLM, based agentic systems entail 
substantial costs. Deploying these systems in high, volume or high, value transactional 
environments can become financially challenging. Moreover, the governance of such 
systems has proven challenging, often requiring specialized technical expertise. 

Beyond direct operational costs, poorly implemented LLM, based solutions carry 
significant risk of failure and reputational damage. A prominent example is Air Canada's 
chatbot incident in 2024, where the airline's LLM, powered customer service assistant 
provided incorrect information about bereavement fare policies, leading to a legal ruling 
that held the company responsible for the chatbot's erroneous promises. This case 
illustrates how LLM hallucinations in customer, facing applications can result not only 
in individual customer harm but also in legal liability, negative press coverage, and 
erosion of trust. In regulated industries such as financial services, healthcare, or 
insurance, similar failures could trigger regulatory investigations, compliance violations, 
and substantial financial penalties in addition to reputational costs. 

In contrast, rule-based systems are inherently low, cost to run. They operate with high 
speed, minimal computational resources, and straightforward infrastructure 
requirements, incurring negligible ongoing operational expenses. Historically, however, 
the primary limitation of rule-based approaches has been the significant effort and 
expense associated with authoring rules and constructing scenario logic. The major 
cost has been upfront: translating domain expertise into formal rules, maintaining those 
rules as policies evolve, and ensuring comprehensive coverage of business scenarios. 

Airbus’s fly-by-wire flight-envelope protection system is a well-known rule-based safety 
system used on the A320 aircraft. It enforces deterministic rules that prevent pilots from 
exceeding certified aerodynamic and structural limits, overriding unsafe inputs when 
necessary.  

An important advantage of rule-based systems is that, because they are deterministic, 
testing can be much more rigorous and comprehensive. Every decision pathway can be 
explicitly tested and confirmed through scenario, based test suites. Unlike probabilistic 
systems where exhaustive testing is impossible, deterministic rule systems allow 
organizations to validate that every branch of logic behaves correctly under all specified 
conditions. This testability dramatically reduces the risk of unexpected runtime 
behavior and provides strong assurance for regulatory compliance. 



Although successful rule-based implementations exist, particularly in mission, critical 
contexts, the cost and complexity of the authoring process have inhibited broader, 
large, scale adoption [39]. Additionally, classical expert systems often struggled with 
flexibility - once rules were written, adapting them to new scenarios or business 
contexts required substantial manual effort from domain experts. 

The emergence of LLMs has substantially reduced this barrier. By enabling the rapid 
generation of rules and scenarios through simple rule-based languages, LLMs 
significantly streamline the authoring process. This reduction in effort and cost 
substantially lowers the entry threshold for the adoption of rule-based systems, making 
it possible to combine low operational costs with reduced authoring costs. 

 

5. SESL Architecture, Language, and Operational Model 

SESL (Simple Expert System Language) is designed as a deterministic, explainable, and 
auditable rule-based decisioning framework suitable for high, stakes environments. It 
combines a human, readable rule language, a deterministic forward, chaining execution 
engine, and a suite of tooling for authoring, testing, and governance. Together, these 
components form a symbolic substrate that can be used independently or in hybrid 
workflows with LLMs. 

5.1 Architecture Overview 

SESL comprises three tightly integrated components: 

1. A human, readable rule definition language, designed to be accessible to 
analysts yet precise enough for deterministic execution 

2. A deterministic forward, chaining rule engine, which evaluates all rules until 
convergence under strict and configurable execution semantics 

3. Tooling for development, testing, debugging, and explanation, including a rule 
linter, scenario runner, interactive execution shell, and dependency, graph 
generator 

These components are built to support governance requirements—traceability, 
reproducibility, and auditability, so making SESL well, suited for regulated industries 
such as finance, insurance, healthcare, and taxation. 

5.2 SESL Rule Language 

The SESL language is a structured, YAML, like DSL incorporating three primary sections: 

(a) Constants 



A const block defines globally used values such as numeric thresholds, flags, or policy 
parameters. Constants ensure transparency and make policy updates safer by isolating 
configurable parameters. 

(b) Rules 

Each rule is a structured unit of decision logic with the following fields: 

• rule: A unique, human, readable identifier 

• priority (optional): Resolves conflicts when multiple rules write to the same 
target 

• if: A boolean predicate over facts, constants, or computed values 

• then: Assignments to result fields or derived facts 

• reason: A human, readable explanation used in trace outputs 

(c) Fact Scenarios 

SESL includes a facts block representing test cases or input scenarios. Scenarios can 
be manually created, generated by LLMs, or part of an automated scenario test suite. 
Each scenario is a hierarchical structure reflecting input data (e.g., loan application, 
insured driver profile, transaction requiring VAT classification). 

Language Features 

The language supports: 

• Numeric, boolean, and comparison operators 

• Arithmetic via a strict LET expression subsystem 

• Hierarchical dotted paths (e.g., applicant.credit.score) 

• Explicit value assignment semantics 

• Structured results under result.* 

SESL enforces predictable evaluation semantics, making policies both transparent and 
auditable. 

Example SESL Model 

model: Fraud Detection 
meta: {} 
 
const: 
  supply_value_limit: 5000 
 
rules: 



,  rule: HighValueConsumerFlag 
  if: 
    all: 
    ,  customer.type == "consumer" 
    ,  supply.value >= supply_value_limit 
  then: 
    result.flag_high_value_consumer: true 
 
,  rule: CountryMismatchFlag 
  if: supplier.country != customer.country 
  then: 
    result.flag_country_mismatch: true 
 
facts: 
,  scenario: Fraud Example 
  supply: 
    id: F1 
    type: service 
    category: general 
    value: 4000 
  supplier: 
    country: SG 
    vat_registered: false 
  customer: 
    type: consumer 
    country: AU 
    vat_registered: false 
  result: {} 
 
 
5.3 Deterministic Forward, Chaining Engine 

The SESL engine interprets the rule model using a deterministic forward, chaining 
algorithm designed for clarity, reproducibility, and robustness. Forward, chaining means 
the engine starts with known facts and works forward through the rules, applying each 
rule whose conditions are met and updating the working state with new conclusions. 
This continues in cycles until no more rules can fire, a state called convergence or fixed 
point. 

The engine follows a straightforward execution process. First, it loads and validates the 
model, parsing all rules, constants, and fact scenarios while catching any errors such 
as invalid identifiers, malformed expressions, or missing data paths. Then it begins 
iterative rule evaluation, examining each rule in sequence. For every rule, one of three 
things happens: the rule matches (its condition evaluates to true and its actions are 
applied), the rule fails (its condition evaluates to false and nothing happens), or the rule 
errors (due to an invalid expression, missing data, or unsafe reference). 



When a rule fires, its actions modify the working fact state, perhaps setting a result 
value or creating a derived fact. The engine then starts another evaluation cycle, 
checking all rules again with this updated state. This process repeats until the system 
reaches a fixed point where no rule can change the state further, or until a rule explicitly 
stops execution, or until a safety iteration limit is reached to prevent infinite loops. 

Understanding Deterministic Conflict Handling 

In any rule-based system, conflicts can arise when multiple rules want to write to the 
same result field. For example, one rule might say "set credit_decision to APPROVED" 
while another says "set credit_decision to DECLINED." SESL handles these conflicts 
deterministically, meaning the resolution is predictable and consistent across all 
executions. 

SESL supports configurable conflict resolution policies. One common approach is 
priority, based resolution: each rule can have a priority number, and higher priority rules 
override lower priority ones. Another approach is order, based resolution: the last rule to 
fire wins. Crucially, these policies are explicit and deterministic - identical inputs always 
produce identical outputs, regardless of when or where the model runs. This differs 
from some systems where conflict resolution might depend on the order rules happen 
to be stored in memory or other implementation details that could vary between runs. 

Trace and Dependency Recording 

Each rule evaluation is logged in detail, creating an audit trail for debugging and 
explanation. The trace records which rules were evaluated, which fired, which failed, 
what values were computed, and how the state changed at each step. This 
comprehensive logging is what makes SESL's explanations trustworthy they're derived 
directly from the actual execution path, not generated after the fact. 

Strict Mode Safety Features 

SESL's strict execution modes ensure reliability by catching potential problems before 
they cause issues. Unknown identifiers produce immediate errors rather than silently 
defaulting to null or empty values. Unquoted text cannot silently become a string, 
everything must be explicit. Unsafe constructs such as arbitrary function calls or 
external references are rejected outright. The LET expressions (for computing derived 
values) are evaluated through a restricted interpreter that prevents arbitrary code 
execution. 

These safety features guarantee that SESL models cannot behave unpredictably, even if 
they were authored or modified by LLMs without perfect understanding of the domain. 
The system enforces correctness structurally, making it much harder to accidentally 
create rules that produce unexpected behavior. 

5.4 Monitoring, Tracing, and Explanation Framework 



A defining strength of SESL is its built, in explanation layer. Every evaluation emits a 
comprehensive structured trace that tells the complete story of how a decision was 
reached. The explanation system captures several types of information. Rule firing 
traces provide a chronologically ordered list of everything that happened during 
evaluation: which rules were examined, which ones fired, which failed and why, and 
which conditions were met or unmet at each step. This creates a complete audit trail of 
the decision process. 

Driver trees take this a step further by mapping the causal relationships in the decision. 
They show how input facts led to final outputs, which rules contributed to each result 
value, and the dependencies between facts, conditions, and outcomes. Think of a driver 
tree as a visual map showing "this credit score led to this rule firing, which set this flag, 
which caused this final decision." These visualizations are especially valuable for 
regulatory inspection, internal audit, and explaining decisions to customers who want 
to understand why they received a particular outcome. 

Explanation blocks provide human, readable summaries that translate the technical 
execution into natural language. They describe which conditions were matched, what 
values were computed in LET expressions, what result values were assigned, and why - 
all drawn from the reasons specified in rule definitions. This makes explanations 
accessible to non, technical stakeholders. 

Finally, execution metrics provide quantitative information about the evaluation: how 
many iterations were needed, how many rules matched and fired, performance timings, 
and whether any conflict resolution events occurred. Together, these artifacts enable 
step, by, step reconstruction of the decision process, meeting governance obligations 
for transparency. More importantly, they're faithful to what actually happened.  

5.5 Tooling and Development Workflow 

The SESL CLI (command, line interface) provides a professional, grade environment for 
model development and governance, making it practical to build and maintain complex 
rule sets in real business contexts. 

The interactive execution mode is particularly valuable during development. It enables 
step, by, step evaluation of rules, letting developers and domain experts watch exactly 
how the engine processes each rule, what values change, and why. This is invaluable for 
debugging complex logic and for training new team members on how policies work in 
practice. 

For production use, the batch execution mode supports CI/CD pipelines, regression 
testing, and bulk scenario runs. Organizations can integrate SESL into their automated 
testing infrastructure, running thousands of test scenarios on every rule change to 



ensure nothing breaks. This level of automated validation is difficult to achieve with 
probabilistic systems but straightforward with deterministic rule engines. 

The linting and structural validation tools act as a safety net, catching problems before 
they reach production. The linter detects issues like unreachable rules that can never 
fire, unused constants that suggest incomplete implementation, conflicting 
assignments where multiple rules fight over the same value, missing fact paths that 
would cause runtime errors, and other unintended model behaviors. Running the linter 
before deployment catches most common authoring errors. 

The scenario testing framework allows teams to build large suites of test inputs that 
validate policy behavior across edge cases. Because SESL is deterministic, these 
scenarios function as executable specifications—if a scenario passes, you know that 
particular input will always produce that output. This makes scenario libraries a 
powerful tool for regression testing and policy drift detection. 

Finally, the dependency graph generation produces visualizations that show the 
structure of the rule model: which rules depend on which facts, how information flows 
from inputs to results, and where circular or redundant logic might exist. These graphs 
help teams understand complex models at a glance and identify opportunities for 
simplification or refactoring. 

5.6 Expert Review and Governance 

SESL fits naturally into business governance workflows because it bridges the gap 
between technical implementation and business policy. The human, readable rule 
format means business experts can review rule text directly, without needing to 
understand programming languages or reverse, engineer code. They can verify that the 
implemented rules actually match the intended policy, catch logical errors, and suggest 
improvements. 

Engineers, on the other hand, validate execution traces for technical correctness. They 
ensure the rules execute efficiently, handle edge cases properly, and integrate correctly 
with surrounding systems. The clear separation between business logic (in rules) and 
technical implementation (in the engine) makes this division of responsibility practical. 

Risk and compliance teams audit models using SESL's deterministic logs. Because 
every decision is accompanied by a complete trace showing exactly which rules fired 
and why, auditors can verify that the system is following approved policies. They can 
also investigate specific decisions retrospectively—if a customer complains or a 
regulator asks questions, the organization can produce a detailed explanation of how 
that decision was made, which policy provisions were applied, and what data was used. 

SESL includes built, in descriptive metadata such as data sources, creation and update 
dates, owner information, and other documentation fields. Combined with version 



control, this ensures traceability of every rule modification. Organizations can track who 
changed what, when, and why. This is essential for regulated environments where 
changes must be documented and justified. 

In this governance model, LLMs may assist in drafting or refactoring rules, proposing 
new scenarios, or generating documentation. However, SESL remains the authoritative 
execution environment. LLM suggestions go through the same review and testing 
process as manually authored rules. This makes SESL suitable for large, regulated 
organizations that require demonstrably transparent and reproducible decision, making 
systems while still benefiting from LLM acceleration in the authoring phase. 

 

6. Evaluation of the Hybrid LLM–SESL Method 

6.1 Experimental Setup 

To evaluate the benefits of symbolic execution relative to purely generative reasoning, 
we compared two system configurations: 

(a) LLM, only system 

In this baseline condition, a Large Language Model (GPT, 4o with temperature 0.0) 
receives both the natural, language policy description and a structured case profile. The 
LLM is asked to determine the correct decision and provide a justification. All reasoning 
and explanation are generated internally by the model. This condition represents the 
common industry pattern of using an LLM directly as a decision engine. 

(b) LLM, generated SESL rules executed by SESL 

In this condition, the LLM is used only during model authoring: it translates the natural, 
language policy into a SESL rule model. After rule creation, SESL evaluates each case 
deterministically using its forward, chaining rule engine. Explanations are produced 
procedurally from SESL's rule, firing trace. 

6.2 Experimental Task 

We evaluated system performance on a loan eligibility assessment task. This task 
models a lending policy that incorporates income thresholds, debt, to, income ratios, 
credit scores, and employment stability. Each scenario represents a synthetic loan 
application to be evaluated. 

The typical business process (based on common regulatory lending workflows, e.g., UK 
FCA Responsible Lending Guidelines [20]) includes: 

1. Collect applicant information: income, debts, credit history, employment 

2. Validate submitted documents: pay slips, bank statements, ID verification 



3. Assess affordability: compute debt, to, income and disposable income 

4. Evaluate creditworthiness: retrieve credit bureau metrics 

5. Apply policy rules: check thresholds, cutoffs, and exceptions 

6. Determine outcome: approve, require manual review, or decline 

7. Generate rationale: documented reasons for audit and customer 
communication 

Method 

We generated 100 synthetic loan applications with realistic but non, sensitive 
distributions for all input features. A policy document was created specifying three, tier 
decision logic (APPROVED / DECLINED / MANUAL REVIEW). Before conducting any 
experiments, all 100 applications were manually assessed by domain experts to create 
an independent ground truth benchmark against which both systems could be 
evaluated. 

For the LLM, only baseline, we used GPT, 4o (temperature 0.0, JSON response format) 
with prompts asking for a decision and justification. For the SESL condition, we used an 
LLM to generate SESL rules from the policy document, then executed each application 
through SESL's deterministic engine. 

We conducted six independent runs (run 0 through run 5) for each system. Between run 
0 and run 1, and again between run 4 and run 5, we applied prompt, tuning to the GPT, 
based system to improve performance based on error analysis. The prompts and full 
methodology are documented in Appendix A. 

6.3 Results 

Decision Distribution Accuracy 

Table 1 shows the distribution of decisions produced by GPT, SESL, and the manually 
validated benchmark across all 600 evaluations (100 scenarios × 6 runs). 

Table 1: Distribution of Decisions 

Decision GPT Count SESL Count Manual Count GPT % SESL % Manual % 

APPROVED 177 138 138 30% 23% 23% 

DECLINED 256 282 282 43% 47% 47% 

MANUAL REVIEW 167 180 180 28% 30% 30% 

Total 600 600 600 100% 100% 100% 



SESL perfectly reproduced the manually validated decision distribution. This result is 
expected: SESL is a deterministic rule-based system, and provided the rules are 
correctly authored it will always return the same output for a given scenario. In this 
study, the underlying process was captured accurately within the SESL rule set; the use 
of the LLM to assist in drafting SESL rules helped overcome the historically significant 
barrier associated with manual rule authoring. 

GPT, by contrast, showed both distributional divergence and individual decision errors. 
Across the 600 total evaluations (100 scenarios × 6 runs), GPT's aggregate distribution 
deviated from the manual benchmark in its total counts. When examining the 
distribution across all runs, GPT produced 39 more APPROVED decisions and 26 fewer 
DECLINED decisions than the manual benchmark, while MANUAL REVIEW counts were 
closer but still off by 13. 

To test whether GPT's overall decision distribution differs significantly from the manual 
distribution, we performed a chi, square goodness, of, fit test comparing the aggregate 
counts across all 600 evaluations. The test yielded χ² = 14.36, p = 0.00076, indicating 
that GPT's distribution is statistically significantly different from the manual benchmark. 
This suggests systematic bias in how GPT applies the policy rules—it tends to approve 
more cases and decline fewer cases than the policy actually requires. 

However, the more critical measure for operational use is individual decision accuracy. 
Examining the raw evaluation data reveals that GPT made incorrect decisions on 
specific applicants, though the exact error rate varies across runs due to the stochastic 
nature of LLM outputs. The distributional mismatch of 78 total decisions (39 + 26 + 13) 
across 600 evaluations represents approximately 13% aggregate deviation, though this 
does not directly translate to a 13% per, scenario error rate due to the repeated, 
measures design. 

Individual Decision Accuracy Analysis 

To assess per, scenario accuracy, we analyzed run 0 (the baseline run before any prompt 
tuning) in detail. In this run, GPT made incorrect decisions on 42 out of 100 scenarios 
(42% error rate) when compared to the manual ground truth. After prompt engineering 
improvements implemented between run 0 and run 1, the error rate decreased 
substantially to approximately 22%, though volatility remained an issue as discussed 
below. 

Determinism Analysis 

Table 2 presents the distribution of decisions across six repeated runs for both systems. 

Table 2: Distribution of Decisions by Run 

GPT Runs: 



Decision run 0 run 1 run 2 run 3 run 4 run 5 Total 

APPROVED 42 29 29 26 27 24 177 

DECLINED 36 43 46 46 46 39 256 

MANUAL REVIEW 22 28 25 28 27 37 167 

Total 100 100 100 100 100 100 600 

SESL Runs: 

Decision run 0 run 1 run 2 run 3 run 4 run 5 Total 

APPROVED 23 23 23 23 23 23 138 

DECLINED 47 47 47 47 47 47 282 

MANUAL REVIEW 30 30 30 30 30 30 180 

Total 100 100 100 100 100 100 600 

 

As expected for a deterministic rule-based system, SESL produced identical outputs 
across all runs, yielding perfect consistency for each decision category. 

The GPT, based system exhibited run, to, run variability, even though input data 
remained unchanged in runs 0–4. The differences across GPT runs were not statistically 
significant (χ² = 13.66, p = 0.189), indicating fluctuations within the range expected from 
probabilistic sampling. However, the magnitude and direction of changes between 
specific runs correspond to the points at which prompt adjustments were introduced, 
demonstrating the sensitivity of LLM outputs to prompt design. 

Volatility Analysis 

To assess GPT's decision stability, we analyzed how often an applicant received 
different outcomes across runs 1–4 (during which neither prompt nor input data were 
modified). Eight applicants (out of 100) exhibited at least one change in decision across 
these runs, with fluctuations distributed as follows: 5 changes in run 1, 4 in run 2, 2 in 
run 3, and 3 in run 4. 

Table 3: Complete GPT Decision Inconsistencies Across Controlled Runs 

Applicant ID Decision run 0 run 1 run 2 run 3 run 4 run 5 

8 APPROVED 1 1 1 — — — 



Applicant ID Decision run 0 run 1 run 2 run 3 run 4 run 5 

 MANUAL REVIEW — — — 1 1 1 

16 MANUAL REVIEW 1 1 — — — 1 

 DECLINED — — 1 1 1 — 

18 APPROVED 1 1 — — — — 

 MANUAL REVIEW — — 1 1 1 1 

23 DECLINED 1 — 1 1 1 1 

 MANUAL REVIEW — 1 — — — — 

51 APPROVED 1 — 1 — — — 

 MANUAL REVIEW — 1 — 1 1 1 

55 APPROVED 1 1 1 — 1 — 

 DECLINED — — — 1 — 1 

64 MANUAL REVIEW 1 1 — — — — 

 DECLINED — — 1 1 1 1 

66 DECLINED 1 — 1 1 1 1 

 MANUAL REVIEW — 1 — — — — 

94 DECLINED — 1 1 — 1 — 

 MANUAL REVIEW 1 — — 1 — 1 

 

Note: "1" indicates the decision was rendered for that applicant in that run; "—" 
indicates no decision was made. Each applicant showed at least one decision change 
across runs 1, 4 (the controlled period with identical prompts and inputs). 

This yields an approximate volatility rate of 3–5% across controlled conditions, 
demonstrating that GPT introduces measurable non, determinism even when all 
experimental conditions remain fixed. For example, Applicant 8 received APPROVED in 
runs 0, 1, and 2, but then switched to MANUAL REVIEW in runs 3, 4, and 5—despite 
identical inputs. Applicant 55 alternated between APPROVED and DECLINED across 
multiple runs. Applicant 94 showed particularly erratic behaviour, switching between 



DECLINED and MANUAL REVIEW across different runs with no clear pattern. This 
volatility represents a fundamental reliability concern for operational deployment, as 
the same loan application could receive different outcomes depending on when it 
happens to be processed. 

 

7. Discussion 

Our evaluation highlights complementary strengths across symbolic and LLM 
approaches and demonstrates that neither alone is sufficient for all aspects of high, 
stakes decision automation. 

LLMs provide powerful capabilities for interpreting policy text, generating candidate rule 
structures, and supporting human understanding, but their stochastic behavior and 
variable reasoning limit their suitability as standalone decision engines. Symbolic 
systems such as SESL, by contrast, offer determinism, traceability, and governed 
execution, though they require more effort to author and maintain. Together, the two 
approaches form a hybrid architecture that balances flexibility with reliability. 

7.1 Key Insights 

Viewed together, the results show how LLMs and symbolic systems occupy different but 
complementary roles in a high, stakes decision pipeline. The key findings can be 
summarized as follows: 

1. Determinism requires symbolic execution 

Determinism is not an incidental property: it is a direct consequence of symbolic 
execution. SESL's forward, chaining engine, fixed evaluation semantics, and explicit 
conflict resolution policies ensure that the same inputs always lead to the same 
outputs, across runs and environments. In domains where organizations must justify 
and reproduce historical decisions (often years after the fact) this kind of stability is not 
merely convenient but essential. 

2. LLMs exhibit systematic bias and volatility despite careful configuration 

The GPT, based system illustrated how even a carefully configured LLM can drift in 
subtle ways. Despite using a fixed model, temperature 0.0, and consistent inputs, we 
observed decision volatility across runs (3, 5%), along with systematic skew in 
aggregate decision distributions relative to the policy, defined benchmark. Prompt 
engineering reduced (but did not eliminate) these issues, improving accuracy from 42% 
error rate to 22% but still leaving substantial reliability concerns. This is not a criticism 
of the model as such; it is a reflection of the underlying generative paradigm. When a 
system computes answers via probabilistic token prediction, small shifts in prompting, 



context, or model behavior can manifest as different outcomes, especially near 
decision boundaries. 

3. Faithful explanations derive from execution traces, not post, hoc generation 

The study underscores a key distinction between what a system decides and how it 
explains that decision. SESL's explanations are produced from the actual execution 
trace: they derive from the concrete sequence of rules that fired and the values that 
were set. As a result, SESL's explanations are faithful by construction. GPT, in contrast, 
produces justifications post, hoc, in natural language, and the literature suggests that 
such chain-of-thought style explanations need not match the model's true internal 
reasoning. In our experiments, GPT sometimes offered plausible narratives that masked 
misapplications of policy thresholds or compensatory reasoning that the policy did not 
permit. 

4. LLMs excel as authoring tools, not decision engines 

The evaluation shows that LLMs are extremely effective before deployment as tools for 
authoring, refactoring, and documenting rule sets. The SESL model used in the 
experiments originated from LLM, assisted translation of a policy document into SESL 
rules. Without that assistance, the effort required to build and iterate a comparable rule 
model would have been substantially higher. In this sense, LLMs help address the 
classic authoring bottleneck that has historically limited rule-based systems. 

5. Division of labor enables safe use of LLMs in high, stakes contexts 

These observations support a division of labor: LLMs serve best as policy interpreters, 
draft rule writers, and explanation generators conditioned on symbolic traces, while 
SESL functions as the authoritative decision engine. The hybrid arrangement does not 
ask LLMs to provide guarantees they cannot meet; instead, it constrains their influence 
to stages where errors are detectable through testing and review. Symbolic execution, in 
turn, provides the deterministic substrate and faithful explanations that regulators, 
auditors, and affected individuals increasingly expect. 

7.2 Limitations 

Real, world models may scale to thousands of rules 

In large organizations, operational decision engines often encode decades of policy 
evolution, regulatory constraints, product variations, and exception handling. A mature 
deployment may require managing thousands of rules across multiple interacting 
models. While SESL's structured language, linter, and scenario, based testing are 
designed to support this scale, the cognitive and organizational complexity of 
maintaining extensive rule bases cannot be eliminated entirely [37,38]. 



Ensuring consistency across interconnected rule sets, preventing logic duplication, and 
managing change control remain significant engineering challenges. Future 
development of higher, level abstraction mechanisms, modularization frameworks, and 
automated rule analysis tools will be essential to support the long, term sustainability 
of SESL in business environments. 

LLM prompting requires governance 

Although LLMs can accelerate rule model creation by translating natural language 
policies into candidate rule structures, their outputs remain sensitive to prompt 
phrasing, model version, and context. Without guardrails, an LLM may introduce subtle 
misinterpretations of policy language or fail to capture critical edge conditions. 

LLM use in SESL workflows must operate within a formal governance framework that 
includes versioned prompts, validation checkpoints, reproducibility controls, and 
mandatory human review. Organizations should treat LLM, generated rules as 
suggestions rather than executable policy until they have passed automated linting, 
regression testing, and expert verification. 

Human review remains essential 

Despite SESL's deterministic semantics and comprehensive explanation capabilities, 
the correctness of a SESL model ultimately depends on the human experts who define 
and validate the underlying policies. Automated evaluation can detect structural issues 
in rules, but it cannot determine whether the encoded policy is itself fair, lawful, or 
accurate. 

Domain experts must review proposed rule changes, validate scenario outcomes, and 
assess alignment with business intent and regulatory requirements. Furthermore, 
because LLM, generated rules are not inherently trustworthy, expert oversight is critical 
to ensure that natural language ambiguity does not propagate into the decision logic. 

Business integration complexity 

Deploying SESL in production requires integration with existing business systems such 
as loan origination platforms, underwriting engines, CRM systems, and compliance 
monitoring workflows. These integrations must accommodate data ingestion pipelines, 
identity and access management, monitoring infrastructure, and version, controlled 
deployment environments. 

Additionally, organizations may need to align decision outputs with downstream audit, 
case, management, and reporting systems to satisfy internal and external regulatory 
requirements. Ensuring seamless bidirectional interaction between SESL, LLM services, 
and operational databases can be non, trivial, particularly in environments with strict 
security and governance constraints. 



The rule authoring bottleneck 

While SESL provides deterministic execution, the cost of rule authoring remains 
substantial. Domain experts are needed to author and validate rule sets for moderately 
complex policies. This can represent a significant upfront investment compared to 
supervised ML approaches, which may achieve comparable accuracy with labeled data 
alone. Organizations must weigh this authoring cost against the benefits of 
interpretability and governance. 

LLM, generated rules are not automatically correct 

A critical tension exists in the hybrid approach: we argue LLMs cannot be trusted for 
decision execution due to hallucination, yet we propose using LLMs for rule authoring. 
This is not a contradiction but rather a risk, reduction strategy. LLM errors in rule 
authoring are detectable through validation, testing, and expert review before 
deployment, whereas LLM errors in runtime decision, making are not. However, this 
does not eliminate the risk of LLM, introduced policy misinterpretations, and 
organizations must implement rigorous validation workflows. 

Comparison with modern interpretable ML 

Our evaluation does not include comparisons with other interpretable ML approaches 
such as gradient boosted decision trees (XGBoost, LightGBM), Generalized Additive 
Models (GAMs), or modern rule, learning approaches (RuleFit, Skope, rules). These 
methods offer different tradeoffs between interpretability, performance, and 
governance requirements. 

SESL is most appropriate when: (1) explicit policy encoding is required by regulation, (2) 
decisions must be reproducible across system versions, or (3) domain experts require 
direct control over decision logic. For applications where learned patterns are 
acceptable, interpretable ML may be more cost, effective. 

7.3 Broader Impacts 

The adoption of SESL as a symbolic substrate beneath LLM interfaces has the potential 
to significantly improve the transparency, accountability, and trustworthiness of AI 
systems used in socially consequential domains. By ensuring that all operational 
decisions are computed deterministically and accompanied by faithful, structurally 
grounded explanations, SESL reduces the risk of opaque model behavior and enables 
more robust oversight by auditors, regulators, and internal governance teams. 

This stands in contrast to existing black, box or LLM, only systems, which may obscure 
sources of error, embed hidden biases, or provide explanations that diverge from actual 
reasoning processes. SESL therefore acts not only as a technical reliability layer but 
also as an institutional governance aid, making complex AI systems more accessible to 



non, technical stakeholders involved in compliance, policy review, and risk 
management. 

However, SESL does not eliminate broader ethical risks inherent to automated decision, 
making. The accuracy and fairness of the system ultimately depend on the quality of the 
policies, data, and domain knowledge encoded as rules, and these may reflect 
historical inequities or incorrect assumptions. While SESL increases the inspectability 
of such issues, it cannot resolve them on its own; responsible deployment requires 
rigorous fairness analysis, legal review, and continuous monitoring for disparate impact. 

Furthermore, the use of LLMs in rule authoring introduces new challenges, including the 
potential importation of societal biases or misinterpretation of policy language. 
Although SESL's deterministic execution prevents these issues from directly appearing 
in operational decisions, organizations must employ appropriate validation workflows 
to ensure that LLM, generated rules align with domain standards and ethical norms. 

7.4 Decision Framework: When to Use SESL vs. Alternatives 

SESL is not universally optimal. We recommend SESL when: 

Strong Indicators: 
• Regulatory requirements mandate explicit, auditable decision logic 
• Policies change frequently and must be traceable to business decisions 
• Domain experts must directly control decision rules 
• Decisions must be reproducible across system versions for compliance 
• Post, hoc explanations are insufficient (pre, hoc interpretability required) 

Indicators Against: 
• Optimal patterns are unknown and must be learned from data 
• Decision boundaries are highly complex and non, linear 
• Authoring cost exceeds model training and validation cost 
• Domain expertise is limited or unavailable 
• Rapid prototyping and iteration are priorities 

Alternative Approaches to Consider: 
• Supervised ML with interpretability constraints: When patterns must be learned 

but some interpretability is needed (use constrained trees, GAMs, RuleFit) 
• Traditional ML + explanation layer: When black, box performance is acceptable 

and post, hoc explanations suffice (use XGBoost + SHAP) 
• Hybrid symbolic, ML: When some rules are explicit and others learned (use rule-

based preprocessing + ML) 

 

 



7.5 Ethical Considerations 

The use of SESL has the potential to bring several positive ethical benefits. By making 
automated decision-making processes more transparent, SESL can help reduce the risk 
of harm caused by opaque algorithms and improve regulatory compliance. This 
increased clarity can also strengthen public trust and support the preservation of 
institutional knowledge in a form that remains interpretable and auditable over time. 

However, SESL also carries important risks that must be acknowledged. Transparency 
can create a false sense of security, as interpretable systems are not inherently fair or 
correct. Organizations might also engage in regulatory arbitrage, using SESL to give the 
appearance of compliance while leaving core decision-making processes opaque. 
Furthermore, explicit rules can encode bias just as easily as machine-learning models, 
and reliance on rule-based systems may discourage innovation by limiting exploration 
of new or unconventional decision patterns. 

To mitigate these risks, SESL should be deployed alongside (rather than instead of) 
rigorous fairness auditing. Organizations must continue to test for disparate impact 
even when decisions are interpretable, and expert reviews should incorporate diverse 
perspectives rather than focusing solely on technical validation. Continuous monitoring 
is essential to detect unintended consequences that may emerge over time. 

There are also dual-use concerns. Although SESL is intended to support responsible 
governance, it could be misused to automate discriminatory decisions under the guise 
of transparency, to encode questionable policies in an interpretable format, or to 
technically comply with oversight requirements while undermining their intent. For 
these reasons, we advocate deploying SESL only within comprehensive AI governance 
frameworks that prioritize fairness, accountability, and meaningful human oversight. 

 

 

8. Conclusion 

SESL demonstrates that deterministic symbolic execution can address specific 
limitations of LLM, only approaches in high, stakes business AI - particularly 
hallucination, non, determinism, and ungovernable explanations. 

Our evaluation shows that Neuro-Symbolic / hybrid LLM–SESL architectures achieve 
perfect determinism and eliminate fabricated justifications, though at the cost of 
increased authoring effort and reduced flexibility compared to learned models. 

SESL is not a universal solution. It is most appropriate for regulated domains where 
explicit policy encoding, direct expert control, and pre, hoc interpretability are required 
or strongly preferred. Organizations should evaluate SESL against modern interpretable 



ML alternatives (gradient boosted trees, GAMs, rule, learning systems) based on their 
specific governance requirements, available expertise, and cost constraints. 

Key Contributions 

1. A modern expert system language with business tooling 

2. Demonstration that symbolic substrates can mitigate LLM risks 

3. A validation framework for LLM, generated rules 

4. Empirical evidence on the determinism–flexibility tradeoff 

 

Future Work 

Future research should focus on: 

• Real, world deployment studies with cost–benefit analysis 

• Formal verification methods for rule sets 

• Automated bias detection and remediation tooling 

• Hybrid approaches combining SESL with learned components 

 

We believe SESL represents a practical path toward trustworthy AI for specific business 
contexts, but acknowledge it is one tool among many in the broader interpretable AI 
landscape. 

 

9. Data and Code Availability 

Synthetic Test Data: The 100 synthetic scenarios used in our evaluation are available at 
www.sesl.ai/paper or upon request to reviewers. These scenarios contain no sensitive 
information and can be freely reproduced. 

SESL Engine: The SESL runtime implementation is made available for research 
purposes under a non, commercial license at https://www.sesl.ai. Academic 
researchers may request full source code access for independent verification. 

Evaluation Scripts: Python scripts for computing evaluation metrics (determinism, 
accuracy, stability analysis) are available at www.sesl.ai/paper or in supplementary 
materials. 

LLM Prompts: All prompts used for LLM, only baseline and rule generation are 
documented in Appendix A to enable replication. 



Reproducibility Note: LLM outputs may vary across API versions even with fixed 
parameters. Our evaluation used GPT, 4o with temperature 0.0. Independent 
researchers attempting replication should expect minor numerical variation but 
qualitatively similar results. 
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Appendix A. Prompts, Programs, and Data Description 

A.1 Model and Methodology for Prompt Improvement 

Model: GPT, 4o (OpenAI) 
Temperature: 0.0 (deterministic mode) 
Response Format: JSON object (enforced via OpenAI API parameter) 

Prompt engineering followed an iterative, data, driven approach: 
1. Baseline Evaluation: Run initial prompt, measure agreement with SESL ground 

truth 
2. Disagreement Analysis: Categorize all GPT, SESL mismatches by decision type 

and reason 
3. Pattern Identification: Identify systematic errors (e.g., auto, approving manual 

review cases) 
4. Hypothesis Formation: Determine root causes (e.g., LLM applying compensatory 

logic) 
5. Prompt Refinement: Add explicit prohibitions and structural constraints 
6. Validation: Re, run evaluation, measure improvement, iterate 

 

 



A.2 Prompt Evolution for GPT Response 

Initial Prompt (run 0 ,  Baseline) 

You are a credit underwriter. The policy defines THREE decision categories:  

APPROVED/DECLINED/MANUAL REVIEW. 

 

Instructions: Follow policy thresholds precisely, return JSON with decision and reason. 

Structure: Minimal, generic underwriter framing. 

Result: 42 APPROVED, 36 DECLINED, 22 MANUAL REVIEW (58% agreement) 

Observed Issues (from disagreement analysis): 

• Auto, approved 19 cases that required MANUAL REVIEW (credit 640, 699) 

• Applied compensatory logic ("high income compensates for borderline credit") 

• Treated MANUAL REVIEW as "suggested human involvement" not mandatory 
decision 

• Missed document verification failures 
• Aggregated multiple positive factors to override single policy violation 

 

Prompt Engineering Iteration 1 (runs 1, 4) 

Added structured sections to enforce policy adherence: 

CRITICAL INSTRUCTIONS: 

1. THREE distinct decision categories (APPROVED/DECLINED/MANUAL REVIEW) 

2. MANUAL REVIEW is NOT optional ,  must return if policy specifies 

3. Apply ALL thresholds as exact cutoffs, not guidelines 

4. Process rules in order, most restrictive takes precedence 

 

PROHIBITED BEHAVIORS: 

,  Do NOT apply judgment to "borderline" cases 

,  Do NOT auto, approve manual review cases 

,  Do NOT make assumptions about unstated thresholds 

,  Do NOT aggregate factors to override explicit rules 



Result: 27, 29 APPROVED, 43, 46 DECLINED, 25, 28 MANUAL REVIEW (70, 74% 
agreement) 

Remaining Issues: 
• Still auto, approving 6 manual review cases (credit score 640, 699) 
• Too lenient on 10 document verification failures 
• Misinterpreting credit 620, 639 range 
• No explicit rule execution order 

 

Prompt Engineering Iteration 2 (run 5) 

Added rule precedence and absolute prohibitions: 

RULE EXECUTION ORDER (MANDATORY): 

1. Document Verification (FIRST ,  if fail, DECLINE immediately) 

2. Credit Score Thresholds (SECOND ,  apply exact ranges, no judgment) 

3. Affordability Checks (THIRD ,  DTI and disposable income) 

4. Employment Stability (FOURTH ,  tenure requirements) 

 

ABSOLUTE PROHIBITIONS: 

,  NEVER approve credit score 640, 699 (MUST be MANUAL REVIEW) 

,  NEVER approve credit score 620, 639 (MUST be MANUAL REVIEW) 

,  NEVER approve if ANY required document unverified 

,  NEVER use compensatory logic 

,  NEVER aggregate positive factors to override policy violation 

 

CREDIT SCORE RULES (NO EXCEPTIONS): 

,  Below 640: DECLINED 

,  640, 699: MANUAL REVIEW (not approved, even with perfect metrics) 

,  620, 639: MANUAL REVIEW 

,  700+: Can proceed to other checks 

Result: 24 APPROVED, 39 DECLINED, 37 MANUAL REVIEW (78% agreement) 



Improvement: +4% from iteration 1, +20% total from baseline 

 

 

A.3 SESL Rule Generation Prompt 

“You are an expert SESL rule, writer. Convert the policy below into SESL YAML only. 

 

CRITICAL SESL SYNTAX RULES (follow exactly): 

 

1. TOP, LEVEL STRUCTURE: 

   ,  const: (optional) define reusable constants 

   ,  rules: (required) list of rules 

   ,  facts: (optional) test scenarios 

 

2. RULE STRUCTURE ,  Each rule must have: 

   ,  rule: unique_name 

   ,  priority: number (higher fires first) 

   ,  let: (optional) derived variables 

   ,  if: list of conditions 

   ,  then: list of actions (write to result.*) 

   ,  because: "explanation text" 

   ,  stop: true/false 

 

3. LET BLOCK RULES (CRITICAL ,  prevents circular dependencies): 

   ,  LET variables are evaluated in ORDER from top to bottom 

   ,  A LET variable can ONLY reference: 

     * Input facts (from applicant data) 

     * Constants (from const section) 

     * LET variables defined EARLIER in the SAME let block 

   ,  NEVER reference a LET variable that is defined later 

   ,  NEVER use function calls (no min, max, sum, len, etc.) 

   ,  Use only arithmetic: +, , , *, /, parentheses 



   ,  Use boolean expressions for complex logic 

 

4. AVOIDING CIRCULAR DEPENDENCIES: 

   ,  If you need min/max of multiple values, check each individually in IF conditions 

   ,  For spreads between values, calculate ALL differences explicitly 

 

5. CONDITIONS (in IF blocks): 

   ,  Simple comparisons only: ==, !=, >, <, >=, <=, in, not in 

   ,  NO arithmetic in conditions 

   ,  Logic combinators: all/and, any/or 

   ,  Boolean LET variables MUST be compared explicitly 

 

6. ACTIONS (in THEN blocks): 

   ,  ALL actions write to result.* namespace 

   ,  Use quoted strings, booleans (true/false), or numbers 

 

7. FIELD NAMES: 

   ,  Use EXACT field names from the provided applicant data 

   ,  Do NOT invent field names or assume naming conventions 

 

8. FORMATTING: 

   ,  Valid YAML only (2, space indentation) 

   ,  No markdown fences 

   ,  No comments in output 

 

Generate SESL code for: {prompt} 

 

 

A.4 Synthetic Data Generation Details 

Input Files and Data Sources 

Dataset: 



• File: Loan_dataset.json 

• Contents: 100 synthetic loan applications 

• Fields per applicant (16 total): id, name, 

 

A.4 Synthetic Data Generation Details 

Input Files and Data Sources 

Dataset: 

• File: Loan_dataset.json 

• Contents: 100 synthetic loan applications 

• Fields per applicant (16 total): id, name, income, debts, credit_score, 
employment_years, rent, loan_amount, pay_slips_verified, 
bank_statements_verified, id_verified, dti_ratio, disposable_income, 
bureau_score_1, bureau_score_2, bureau_score_3 

• Format: JSON array of objects 

Results Dataset: 

• File: Loan_dataset_Manual_Result.json 

• Contents: 100 manually assessed decisions and reasons 

• Format: JSON array of objects 

Policy Document: 

• File: Loan_Approval_SOP.pdf 

• Size: 7,685 characters (after text extraction) 

• Contents: Three, tier decision framework including debt, to, income ratio 
thresholds, minimum income and employment requirements, credit score 
cutoffs, and documentation/verification rules 

SESL Rules: 

• File: Task1_Loan_Approval_rules.sesl 

• Contents: 15 SESL rules and 20 constants 

• Format: YAML, based SESL model 

• Development: Generated by LLM using standard prompt with policy document 



Execution Scripts 

Main Evaluation Script: 

• File: Task1_Loan_Approval_simple.py 

• Purpose: Executes both GPT, 4 and SESL evaluations for all 100 applicants 

Output Files 

GPT, 4 Results Cache: 

• File: Task1_Loan_Approval_gpt.json 

• Contents: 100 evaluations with applicant ID, name, decision, and reasoning 

• Format: JSON array (~150 KB) 

SESL Results Cache: 

• File: Task1_Loan_Approval_sesl.json 

• Contents: 100 deterministic evaluations with decision, explanation, and 
execution trace 

• Format: JSON array (~80 KB) 

Combined Results Files: 

• File: All_Runs_Results.csv (GPT results, SESL results, manual results) 

• File: Task1_Loan_Approval_results.json (fully merged results and metadata) 
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